Унитарная матрица - definitie. Wat is Унитарная матрица
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Унитарная матрица - definitie


Унитарная матрица         

порядка n, Матрица с комплексными элементами, результат умножения которой на комплексно сопряжённую транспонированную матрицу равен единичной матрице: . Элементы У. м. связаны соотношениями:

(i, k = 1, 2,.., n).

У. М. порядка n образуют группу (См. Группа) относительно операции умножения. У. м. с действительными элементами является ортогональной матрицей. (См. Ортогональная матрица)

Унитарная матрица         
Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: U^\dagger U = UU^\dagger = I.
Неособенная матрица         
КВАДРАТНАЯ МАТРИЦА, ОПРЕДЕЛИТЕЛЬ КОТОРОЙ ОТЛИЧЕН ОТ НУЛЯ
Обратимая матрица; Неособенная матрица

в математике, квадратная матрица А = IIaijII1n порядка n, определитель |А| которой не равен нулю. Всякая Н. м. имеет обратную матрицу. Н. м. определяет в n-мерном пространстве невырожденное Линейное преобразование. Переход от одной системы координат к другой также задаётся Н. м.

Wikipedia

Унитарная матрица

Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: U U = U U = I {\displaystyle U^{\dagger }U=UU^{\dagger }=I} . Другими словами, матрица унитарна тогда и только тогда, когда существует обратная к ней матрица, удовлетворяющая условию U 1 = U {\displaystyle U^{-1}=U^{\dagger }} .

Унитарные матрицы обобщают понятие ортогональных матриц, элементы которых — только действительные числа, на матрицы с компле́ксными числами.

Следующие утверждения относительно данной квадратной матрицы A {\displaystyle A} являются эквивалентными:

  1. A {\displaystyle A}  — унитарна.
  2. A {\displaystyle A^{\dagger }}  — унитарна.
  3. Столбцы матрицы A {\displaystyle A} образуют ортонормированный базис в унитарном пространстве.
  4. Строки матрицы A {\displaystyle A} образуют ортонормированный базис в унитарном пространстве.